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Abstract—Data correlation is the most compute-intensive stage
in Synthetic Aperture Radar (SAR) data processing. Generally
specialized hardware is used for this purpose. But due to the
never ending advancements in the areas of computing hardware
and software technologies, even COTS hardware may be used
to derive real-time performance from the correlator. This paper
discusses the implementations of Range Doppler (the very first
imaging algorithm and one of the most popular algorithms)
and Back-projection (the most data & computationally intensive
algorithm) algorithms used in SAR Remote Sensing using CPU &
GPU parallel processing technologies like OpenMP, PPL, CUDA,
OpenCL and C++ AMP and compare their performances. The
time taken for the computation of each step in these algorithms
are recorded and compared to assess the acceleration achieved. It
has been observed that both of the algorithms are benefitted by
these parallelization technologies and the acceleration is more for
data parallel and compute intensive steps. The total acceleration
achieved varies in the range of 23x to 2166x on an NVIDIA
Tesla K20c GPU and assures that real-time performances can be
achieved.

I. INTRODUCTION

The invention of Synthetic Aperture Radar (SAR) is gener-
ally credited to Carl Wiley, of the Goodyear Aircraft Corpo-
ration, in 1951 and SARs are being used in Remote Sensing
since 1978 (SEASAT-A satellite). In the SAR concept, the
radar is placed on a moving platform, generally a satellite or
airplane, and uses signal processing to produce an imagery of
what the radar is seeing. Decades long researches in SAR
have resulted in developing a family of remarkable signal
processing techniques that are capable of producing imagery
whose cross-range resolution is independent of range and
much finer than is possible to achieve with any practically-
deployable real-beam antenna [1], [2], [3], [4] & [5]. One of
the major challenges associated with SAR is the processing
of the voluminous data (size ranging from Giga Bytes to Tera
Bytes) acquired during its mission. The data collected by a
SAR has to be processed either in real-time or sent to a ground
station for offline processing.

There are three stages in SAR data processing: Pre-
processing, Correlation and Post-processing. The correlator
uses popular SAR imaging algorithms such as Range Doppler
Algorithm (RDA), Range Migration Algorithm (RMA), Chirp
Scaling Algorithm (CSA), SPECAN, Polar Format Algorithm
(PFA), Back-projection (BP) Algorithm, Kirchhoff Migration
Algorithm, etc. All these algorithms are compute-intensive and
become data-intensive as well since they have to work on
massive amount of data. Specialized hardware such as Field
Programmable Gate Arrays (FPGA), DSP boards, POWERPC,

etc., are used as the platform for the correlator for achieving
the necessary real-time performance. The major problem as-
sociated with these specialized hardware is that the binding
between the software and hardware is too strong. The software
may have to be re-written if we change the hardware.

An alternative is to use COTS hardware, but they fail to
provide the real-time performance under normal conditions.
Fortunately, the never ending advancements in the areas of
computing hardware and software technologies offer a mul-
titude of options here. These options include simple Multi-
core programming, Distributed computing on Multiple CPUs,
Graphics Processor Unit (GPU) based computing, Coprocessor
based computing, etc.

This paper discusses the implementation of Open speci-
fications for Multi-Processing (OpenMP), Microsoft Parallel
Patterns Library (PPL), Compute Unified Device Architecture
(CUDA), Open Computing Language (OpenCL) and C++
Accelerated Massive Parallelism (C++AMP) in the context
of RDA and Back-projection algorithms. It also compares
the acceleration offered by these technologies in the case
of these algorithms. The reason for choosing RDA is that
it is the very first and is one of the most popular SAR
imaging algorithms and has computational complexity very
much similar to other commonly used algorithms like RMA
& CSA. Backp-projection is the most Compute-intensive and
data parallel SAR imaging algorithm and hence is naturally
the best choice for parallelization.

The remaining portions of this paper are divided as follows:
Sections II & III will give an overview of the RDA and
BP algorithms respectively. Section IV will discuss about
the performance acceleration technologies. The implementa-
tion approach is elaborated in section V and the results are
discussed in detail in section VI. Concluding remarks are in
section VII.

II. THE RANGE DOPPLER ALGORITHM

The Range Doppler Algorithm was developed in 1976 - 78
for processing SEASAT SAR data. The first digitally processed
space-borne SAR image was made with this algorithm in 1978.
The basic processing steps are shown in Fig. 1.

As suggested in [18], to optimize the focus when creating
the RDA image using the low altitude CASIE data we used
a hyperbolic azimuth chirp rather than the traditional RDA
parabolic azimuth chirp. A hyperbolic azimuth chirp Az(m)
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Fig. 1. RDA Block Diagram.

used for RDA azimuth compression at range ra can be
expressed as

Az(m) = e−j(2πfcτ(m)+Krτ
2(m)) (1)

where

τ(m) = 2

√
r2a + (

mv

PRF
)2 (2)

Kr is the LFM frequency ramp rate, m = [
−Np
2

,
Np
2

] is the
pulse index, Np is the number of pulses, fc is the carrier
frequency, c is the speed of light, PRF is the pulse repetition
frequency, and v is the along-track velocity.

III. THE BACKPROJECTION ALGORITHM

The back-projection algorithm is an exact algorithm for
creating images from SAR data. The algorithm implements
the azimuth matched Filter for each pixel, and accounts for
both range cell migration and the motion of the aircraft. Back-
projection normally operates on interpolated range compressed
data. For each pixel, the range compressed data from a given
LFM chirp is interpolated to the slant-range distance from
the pixel to the platform. Then the matched filter phase is
computed based on the distance, which corrects for motion
during the pulse. The interpolated range-compressed signal
and matched phase are multiplied and summed over all the
chirps in the azimuth window. Sub-aperture processing can
be accomplished by creating appropriate azimuth windows,
and incoherently summing the sub-aperture images. The back-
projection algorithm can optimally account for all flight con-
ditions including non-ideal motion and gain fluctuation due to
attitude variations [17].

For a pixel located (x, y, z), the SAR back-projection algo-
rithm can be approximately expressed as [18]

I(x, y) =
∑
n

S(n, dn)P (dn)e
−j4π(

dn
λ

− d2nKτ

c2
)

(3)

dn =
√
(xn − x)2 + (yn − y)2 + (zn − z)2 (4)

where I(x, y) is the complex pixel value (the complex SAR
image), λ is the wavelength of the transmit frequency at the

center of the SAR band, dn is the distance between (x, y, z)
and the antenna phase center of the SAR antenna (xn, yn, zn)
for pulse number n.

In above equation, P (dn) is the range-compressed SAR data
interpolated to slant range dn. S(n, dn) is a range-dependent
window to reduce azimuth side lobes.

The SAR image is created by varying the x and y over a
grid. The height z of the surface at (x, y) is typically computed
from a digital elevation map (DEM). The challenge of back-
projection is that it is computationally intensive; however it
can be parallelized to achieve near real-time performance in
many cases.

IV. ACCELERATION TECHNOLOGIES

Latest CPUs have up to 24 cores and 4 such CPUs
(amounting to 96 cores) can be accommodated in one Server
/ Workstation. 32 core processors are in the making and this
trend will continue. No distributed computing technology like
MPI [10] is required to run a parallel algorithm on such
a hardware platform. A parallel algorithm implemented in
OpenMP [10] & [13] or PPL [12] can address all these 96
cores.

Graphics Processor Unit based computing is a fast growing
technology for accelerating the efficiency of computation and
data intensive algorithms. High-end GPUs with thousands of
processing cores and above 5 TFLOPS double precision (10+
TFLOPS single precision) computing power are available now.
A single such GPU can outperform hundreds of CPU cores
and has reduced hardware size, weight and cost. There are
at least 4 technologies now to program a GPU. They are
NVIDIA CUDA [6], [9] & [10], OpenCL from Khronos
Group [6], [7], [8] & [10], Microsoft C++ AMP [11] and
NVIDIA Open Accelerators (OpenACC) [6].

GPU programming technologies extends the C program-
ming language and allows GPU code to be written in regular C
or C++. The code can either be targeted for the host processor
(the CPU) or be targeted for the device processor (the GPU).
The CPU spawns multi-threaded tasks onto the GPU device.
The GPU has its own internal scheduler that will then allocate
these tasks to the GPU hardware. The data has to be first
transferred from the host memory to the device memory before
running the tasks on the device and once the computation on
the device are over, the results are to be transferred from the
device memory back to the host memory.

Intel Xeon Coprocessor programming is another technology
gaining momentum [14]. Xeon Coprocessors with up to 72
cores are available as of now.

In this work, we have considered the implementation of
RDA using OpenMP & CUDA and Backprojection using PPL,
CUDA, OpenCL & C++ AMP, in addition to their sequential
implementations (Single Core) and comparisons are being
made about the computational performances.

V. IMPLEMENTATION STRATEGY

The raw SAR data used in this study is the public domain
sample SAR data set collected by the BYU/Artemis µASAR
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Fig. 2. Sample µASAR Image [18]

system during the Characterization of Arctic Sea Ice Experi-
ment 2009 (CASIE-09) [15], [16] & [18]. This µASAR raw
data collected from the Arctic Ocean from Svalbard Island is
divided into 1 min segments typically 3.5 km long in the along-
track dimension by 1.2 km wide in the cross-track dimension.
The sample data set used here consists of a 13 sec portion
of one of these segments (segment 9, collected on 25 July
2009). The primary observation swath is defined to be from
just off nadir to an incidence angle of about 72o. The dataset
has 3885 columns and each of these columns represent the
dechirped SAR data for each pulse. The geometry data file
contains the SAR pulse number, latitude in degrees, longitude
in degrees, and altitude in m.

The Satellite µASAR image shown in Fig. 2 shows an area
approximately 3.5 km long by about 1.2 km wide. The data set
corresponding to the region with boundary marked in white is
used in this study.

RDA implementation was carried out in C++ 11, OpenMP
and CUDA-C++, where as the Back-projection was carried out
in C++ 11, PPL, OpenCL, C++ AMP and CUDA-C++. During
the implementation it was found that CUDA implementation
of the preprocessing step in RDA takes more time than a
CPU implementation (approximately 2.7 times). Hence to get
better acceleration, it was decided not to use CUDA for the
preprocessing (except for FFT). The FFT steps used in the
CUDA implementations of both the algorithms use cuFFT
library. It should be note that no optimization strategies were
included in the implementations. All implementations were in
64 bit double precision.

A Windows 7 based 6-core ( 2.4 GHz, single CPU) worksta-
tion with 48 GB DDR3 primary memory and an NVIDIA Tesla
K20c GPU (2496 cores, 5 GB DDR5 Memory) was used in
this study. The development environment includes Microsoft
Visual Studio 2013 (for Serial C++, OpenMP, PPL & C++
AMP) and CUDA Toolkit version 7 (for CUDA & OpenCL).

In RDA, the raw data is first preprocessed. The pre-
processing included even spacing of the data, windowing
(Hanning) and zero padding. A column-wise FFT is then
applied for Range Compression, which is followed by a Row-
wise FFT to perform Azimuth Compression. The output of this
step gives the SAR data in Range-Doppler domain. The Chirp
waveform is converted to frequency domain and convoluted
with the Range-Doppler SAR data to perform a Matched
Filtering. An inverse FFT (in azimuth direction) is then applied
on this filtered data, which is followed by Geo-rectification

Fig. 3. Single-look RDA SAR Image

Fig. 4. Multi-look RDA SAR Image

to generate the corrected single-look SAR image. In order to
reduce the azimuth resolution and speckle noise, an incoherent
averaging (multi-looking) was applied in the azimuth direction
on the pixels of the SAR image.

The Back-projection doesn’t need data to be even spaced.
The Preprocessing step here includes Range FFT & window-
ing only. Back-projection algorithm is then applied to generate
a single-look SAR image. Multi-look processing as described
in the case of RDA is applied then.

VI. RESULTS & DISCUSSION

The outputs of one of these computer programs are shown
in figures 3, 4, 5, 6, 7 & 8 (generated using MATLAB
2017a). All these images are to be rotated 90o clockwise to get
the original view in Fig. 2. In case of RDA, Single & Multi
look SAR images generated before applying geo-rectification
are shown in figures 3 & 4 respectively. The geo-rectified
versions of these images are in figures 5 & 6. Single & multi-
look Back-projected images are in figures 7 & 8 respectively.
The RDA images have a resolution of 2048 × 512 and the
back-projected images are of resolution 2810 × 1208. No
image processing techniques were applied on these images
to enhance their quality.

The computation time (in milliseconds) and acceleration
achieved for these algorithms under the acceleration tech-
nologies over their Single Core C++ implementation are
summarized in Tables I & II. In CUDA Back-projection,
the memory transfer time for host to device and back are not
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Fig. 5. Single-look RDA SAR Image after Geo-rectification

Fig. 6. Multi-look RDA SAR Image after Geo-rectification

Fig. 7. Single-look Back-projected SAR Image

Fig. 8. Multi-look Back-projected SAR Image

shown explicitly. However, they are included in steps 1 & 3
respectively (in Table I). The raw data (input) reading time and
processed data (output) saving time are not considered in the
comparison. It may be noted that the accelerations mentioned
in these tables are not the Speed-ups as we are considering
only the parallelizable steps in BP & RDA for the comparison.

From Tables I & II, it is clear that in a multi-core environ-
ment with 6 cores, technologies like PPL and OpenMP offer

TABLE I
COMPUTATION TIME AND ACCELERATION FOR BACK-PROJECTION

ALGORITHM

Computation Time (ms)
Computation Step

1 Core PPL CUDA OpenCL AMP

Pre-processing 2356 468 936* 2106 453

Singlelook BP 2027214 348925 47 1388 468

Multilook 203 812 16 47 16

Total Time (ms) 2029773 350205 999 3541 937

Acc. over 1 Core (Times) 5.8 2032 573 2166

TABLE II
COMPUTATION TIME AND ACCELERATION FOR RANGE DOPPLER

ALGORITHM

Computation Time (ms)
Computation Step

1 Core OpenMP CUDA

Pre-processing 234 171 230*

Host to Device Data Transfer – – 94

Range Compression 4275 905 156

Chirp FFT 811 281 78

Azimuth Compression 858 328 78

Matched Filtering 202 93 62

IFFT 905 93 62

Geo-rectification 16910 2090 47

Multi-look Processng 1545 296 15

Device to Host data Transfer – – 297

Total Time (ms) 25740 4492 1119

Acc. over Single Core (Times) 5.7 23

up to 5.8 times acceleration over Single Core computation.
Among the GPU acceleration technologies, CUDA and C++
AMP performs better than OpenCL and their performances
are very much similar. One of the reasons for the poor
performance of the OpenCL based implementation is that the
OpenCL libraries bundled with CUDA Toolkit was used for
this implementation and the CUDA toolkit is performance
optimized for CUDA, not for OpenCL.

Another interesting observation(*) is that in the case of the
Pre-processing (Windowing & FFT) step in Back-projection,
CUDA’s performance is inferior to PPL & C++ AMP. In the
pre-processing step(*) in RDA also CUDA underperforms.
This is due to the fact that in the CUDA based implementation,
NVIDIA cuFFT library was used; whereas in the other im-
plementations, a custom made FFT was used and this custom
FFT outperformed cuFFT. Thus the performance of the CUDA
based implementation can further be improved if we perform
the Windowing & FFT step on CPU with OpenMP (or PPL).

As seen from these tables, the Back-projection algorithm
had benefitted the most by the acceleration technologies. This
is expected since the Back-projection algorithm is very much
data parallel and more compute-intensive. Even in RDA the
most compute-intensive step namely Geo-rectification benefit-
ted most from the GPU acceleration. It may also be noted
that the performances of the GPU implementations of these
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two algorithms are very much similar (for example CUDA-
BP takes 999 ms and CUDA-RDA takes 1119 ms), where as
the Single core CPU implementations of these algorithms vary
drastically (in the order of 800 times) in terms of performance.

VII. CONCLUSION

A study has been carried out to compare the performances
of two Radar imaging algorithms under different acceleration
technologies to their suitability to perform SAR data corre-
lation in a real-time environment. The results are found to
be very promising even with mid-range GPUs. This can be
enhanced by using strategies like: optimizing the code by
selecting optimum registry and block sizes and other perfor-
mance optimization approaches like usage of shared memory
concept; using higher-end GPUs like NVIDIA K40, K80, or
P100; using single precision computing (since GPUs offer 2
or 3 times single precision computing power than their double
precision computing power); and by using multiple GPUs on
a single Workstation / Server (up to 4 GPUs are supported
as of now). The performance can further be enhanced if one
uses a distributed computing environment (using technologies
like MPI) with multiple compute nodes. Performance of the
I/O operations may be enhanced by using Parallel I/O libraries
under a Parallel File System.

Thus it is evident that GPUs are an alternative to embedded
technologies (like FPGA, DSP Board, POWERPC, etc.,) to
derive real-time performance out of these imaging algorithms.
But it may be noted that the power requirement for a COTS
GPU is in the order of 100s of Watts and is much higher
than that required by the embedded technologies. Hence COTS
GPUs cannot be considered in situations wherein there is a
stringent power constraint, which GPUs cannot meet. How-
ever, custom GPUs for Embedded platforms (needing very
nominal power) are available, even though they won’t offer
the massive computing power that the COTS GPUs offer.
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